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… From the last class
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… From the last class
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Lecture Outline
● Stereo Vision

○ Introduction to Stereo Vision
○ Epipolar Geometry
○ The correspondence problem

● Stereo Matching
○ Various methods for Stereo Matching
○ Stereo Block Matching
○ A look at SGBM
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Stereo Vision
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Introduction to stereo vision
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Credits: Kenji Hata, Silvio Savarese
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Introduction to stereo vision
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Introduction to stereo vision
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Introduction to stereo vision

9

Credits: Fei Fei Li

How do humans figure out 3D in 2D 
images?
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Introduction to stereo vision
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How do humans figure out 3D in 2D 
images?

1. Shading
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Introduction to stereo vision
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How do humans figure out 3D in 2D 
images?

1. Shading
2. Texture
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Introduction to stereo vision
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How do humans figure out 3D in 2D 
images?

1. Shading
2. Texture
3. Focus
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Introduction to stereo vision
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Credits: Gaurav Pandey, Ford

The stereo problem:

● Nature Inspired approach to 
vision, i.e, 3D with two sensors.

● How to figure out the shape, 
more specifically the depth, of 
objects from a set of two or 
more images?
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Introduction to stereo vision
So, How do we go we go from Stereo Images to Depth Information ?
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Introduction to stereo vision
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Introduction to stereo vision
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Introduction to stereo vision
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Note: We have the 
image planes parallel 
here.
Creating such images 
from non parallel 
cameras is called 
rectification.
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Introduction to stereo vision
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Introduction to stereo vision
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Introduction to stereo vision
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Credits: Fei Fei Li

Given this point how 
do you find the 
corresponding point on 
the other image?
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Introduction to stereo vision
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Given this point how 
do you find the 
corresponding point on 
the other image?

Search the whole 
image?
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Introduction to stereo vision
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Difficult to solve 
accurately, very 
expensive without 
special methods

Given this point how 
do you find the 
corresponding point on 
the other image?

Search the whole 
image?
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Epipolar Geometry
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Epipolar Geometry
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Baseline

Camera 1 
Center

Camera 2 
Center

Epipoles

Epipolar 
Plane
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Epipolar Geometry
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Credits: Richard Hartley, Andrew Zisserman

Epipolar Pencil
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Epipolar Geometry
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Epipolar Geometry
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Epipolar Geometry
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Credits: Fei Fei Li

Easier to solve.
Can use simple SSD or 
similar methods.

Search along this line 
for the closest point.
Computationally way 
more efficient.
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Epipolar Geometry
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Epipolar Geometry

30

Assumed to 
be canonical 
camera
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Epipolar Geometry
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Assumed to 
be canonical 
camera

RTp’ - RTT is p’ in SO 
RTT also lies in plane
=> RTT x (RTp’ - RTT) 
is 
perpendicular to 
epipolar plane
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Epipolar Geometry
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Assumed to 
be canonical 
camera

=> RTT x (RTp’ - RTT) =  
RT(T x p’) is 
perpendicular to p
=> (RT(T x p’))Tp = 0
=> (T x p’T)Rp = 0
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Epipolar Geometry
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From Linear Algebra, the cross product of 
two vectors can be written as : 
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Epipolar Geometry

34

From Linear Algebra, the cross product of 
two vectors can be written as : 

[ax] : skew symmetric
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Epipolar Geometry
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Epipolar Geometry: Essential Matrix (E)
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Epipolar Geometry
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Why?
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Epipolar Geometry
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ax + by + c = 0

i.e L = [a b c]T 
represents a line 
in homogeneous 
coordinates.

=> zTL = 0

where,
z = [x, y, 1]T
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Epipolar Geometry
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Epipolar Geometry: Fundamental Matrix (F)
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F: Fundamental Matrix
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Epipolar Geometry: Properties of F
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Credits: Richard Hartley, Andrew Zisserman
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Epipolar Geometry: Estimating F
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Credits: Robert Collins, Penn State
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Epipolar Geometry: Estimating F
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Epipolar Geometry: Estimating F
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Epipolar Geometry: Estimating F
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Epipolar Geometry: Estimating F
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Epipolar Geometry: Estimating F
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Stereo Matching
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Various Methods for Stereo Matching
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Various Methods for Stereo Matching
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Various Methods for Stereo Matching
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Various Methods for Stereo Matching
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Various Methods for Stereo Matching
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Various Methods for Stereo Matching
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Various Methods for Stereo Matching
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Various Methods for Stereo Matching
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Stereo Block Matching
● Similar to what we just saw in window sizes example.

● Idea is to instead of matching pixel values, match regions of image, this is 
done in order to increase robustness in the depth prediction.

● Sparse Stereo Matching: Use of key points or features to serve as 
corresponding points on the two images.

● Dense Stereo Matching: Match all pixels in a region along a scan line in pair 
of stereo rectified images.
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Stereo Block Matching
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Credits: Trym Vegard Haavardsholm
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Stereo Block Matching: Global Optimization
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Stereo Block Matching: Global Optimization

60

Credits: HEIKO HIRSCHMÜLLER

Cost of pixel 
wise matching

Penalty based on 
neighbours mismatches,
I.e, penalty for neighbours 
having different disparity

Minimize E 
over D to get 
D*
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Stereo Block Matching: Global Optimization
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Cost of pixel 
wise matching

Penalty based on 
neighbours mismatches,
I.e, penalty for neighbours 
having different disparity

Minimize E 
over D to get 
D*

Guess the Drawbacks!!
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Stereo Block Matching: Global Optimization
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Cost of pixel 
wise matching

Penalty based on 
neighbours mismatches,
I.e, penalty for neighbours 
having different disparity

Minimize E 
over D to get 
D*

Guess the Drawbacks!!
● Too Computationally Intensive
● NP Complete Problem
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Stereo Block Matching: Semi Global Matching
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Credits: HEIKO HIRSCHMÜLLER
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Stereo Block Matching: Semi Global Matching
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